N18/4/CHEMI/SP2/ENG/TZ0/XX/M

Markscheme

November 2018

Chemistry

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre,

Cardiff.

C	Questi	on	Answers	Notes	Total
1.	а	i	n_{CuSO4} «= 0.0800 dm ³ × 0.200 mol dm ⁻³ » = 0.0160 mol AND n_{Fe} «= $\frac{3.26 \text{ g}}{55.85 \text{ gmol}^{-1}}$ » = 0.0584 mol ✓		2
			CuSO ₄ is the limiting reactant \checkmark	Do not award M2 if mole calculation is not shown.	
1.	а	ii	ALTERNATIVE 1: «0.0160 mol × 63.55 g mol ⁻¹ =» 1.02 «g» \checkmark « $\frac{0.872 \text{ g}}{1.02 \text{ g}}$ × 100 =» 85.5 «%» \checkmark ALTERNATIVE 2: « $\frac{0.872 \text{ g}}{63.55 \text{ g mol}^{-1}}$ =» 0.0137 «mol» \checkmark « $\frac{0.0137 \text{ mol}}{0.0160 \text{ mol}}$ × 100 =» 85.6 «%» \checkmark	Accept answers in the range 85–86 %. Award [2] for correct final answer.	2

C	Question		Answers	Notes	Total
1.	b	i	ALTERNATIVE 1: q = «80.0 g × 4.18 J g ⁻¹ K ⁻¹ × 7.5 K =» 2.5 × 10 ³ «J»/2.5 «kJ» ✓ «per mol of CuSO ₄ = $\frac{-2.5 \text{ kJ}}{0.0160 \text{ mol}}$ = -1.6 × 10 ² kJ mol ⁻¹ » «for the reaction» ΔH = -1.6 × 10 ² «kJ» ✓ ALTERNATIVE 2: q = «80.0 g × 4.18 J g ⁻¹ K ⁻¹ × 7.5 K =» 2.5 × 10 ³ «J»/2.5 «kJ» ✓ «n _{Cu} = $\frac{0.872}{63.55}$ = 0.0137 mol» «per mol of CuSO ₄ = $\frac{-2.5 \text{ kJ}}{0.0137 \text{ mol}}$ = -1.8 × 10 ² kJ mol ⁻¹ »	Award [2] for correct final answer.	2
1.	b	ii	density «of solution» is 1.00 g cm^{-3} <i>OR</i> specific heat capacity «of solution» is $4.18 \text{ J g}^{-1} \text{ K}^{-1}$ /that of «pure» water <i>OR</i> reaction goes to completion <i>OR</i> iron/CuSO ₄ does not react with other substances \checkmark	The mark for "reaction goes to completion" can only be awarded if 0.0160 mol was used in part (b)(i). Do not accept "heat loss".	1

N18/4/CHEMI/SP2/ENG/TZ0/XX/M

(continued...)

(Question 1b continued)

Question		on	Answers	Notes	Total
1.	b	111	ALTERNATIVE 1: «0.2 °C × $\frac{100}{7.5$ °C =» 3 %/0.03 √ «0.03 × 160 kJ» = «±» 5 «kJ» √	Accept values in the range 4.1–5.5 «kJ». Award [2] for correct final answer.	
					2

C	Questi	on	Answers	Notes	Total
1.	C	i	$\int_{S-H} \int_{O} \int_{O} \int_{Time} \int_{Time} \int_{Time} \int_{Time} \int_{Time} \int_{Concentration increases with time decreasing gradient as reaction proceeds }$		2
1.	с	ii	«draw a» tangent to the curve at time = 0 \checkmark «rate equals» gradient/slope «of the tangent» \checkmark	Accept suitable diagram.	2
1.	С	111	piece has smaller surface area ✓ lower frequency of collisions <i>OR</i> fewer collisions per second/unit time ✓	Accept "chance/probability" instead of "frequency". Do not accept just "fewer collisions".	2

Q	uesti	on	Answers	Notes	Total
2.	а		CH₃CH(OH)CH₃ ✓	Accept the full or condensed structural formula.	1
2.	b			Accept answers in the range 7.99×10^{22} to 8.19×10^{22} . Award [2] for correct final answer.	2
2.	с		secondary AND OH/hydroxyl is attached to a carbon bonded to one hydrogen OR secondary AND OH/hydroxyl is attached to a carbon bonded to two C/R/alkyl/CH ₃ «groups» ✓	Accept "secondary AND OH is attached to the second carbon in the chain".	1
2.	d	i	«potassium/sodium» manganate(VII)/permanganate/KMnO₄/NaMnO₄/MnO₄ ⁻ <i>OR</i> «potassium/sodium» dichromate(VI)/K₂Cr₂O ₇ /Na₂Cr₂O ₇ /Cr₂O ₇ ²⁻ √		1
2.	d	ii	-2 ✓		1
2.	d	iii	propanone/propan-2-one/CH₃COCH₃ ✓		1

C	luesti	ion	Answers	Notes	Total
3.	а	i	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5$ <i>OR</i> [Ar] $4s^2 3d^{10} 4p^5 ✓$	Accept 3d before 4s.	1
3.	a	II	Abaug IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Accept double-headed arrows.	1
3.	b		$ \begin{vmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots &$	Accept dots, crosses or lines to represent electron pairs.	1

3.

3.

3.

d

ii

balanced equation \checkmark

Q	uestic	on	Answers	Notes	Total
3.	с		Geometry:		
			trigonal/pyramidal 🗸		
			Reason:		
			three bonds AND one lone pair		
			OR		3
			four electron domains ✓	Accept "charge centres" for "electron domains".	
			O–Br–O angle:	Accept answers in the range 104–109°.	
			107° ✓		
3.	d	i	$BrO_3^-(aq) + 6e^- + 6H^+(aq) \rightarrow Br^-(aq) + 3H_2O(l)$	Accept reversible arrows.	
			correct reactants and products \checkmark		2

-9-

 $BrO_{3}^{-}(aq) + 6Fe^{2+}(aq) + 6H^{+}(aq) \rightarrow Br^{-}(aq) + 3H_{2}O(l) + 6Fe^{3+}(aq)$

1

Question		on	Answers	Notes	Total
4.	а		nuclear charge/number of protons/Z _{eff} increases «causing a stronger pull on the outer electrons» ✓ same number of shells/«outer» energy level/shielding ✓	Accept "atomic number" for "number of protons".	2
4.	b	i	isoelectronic/same electronic configuration/«both» have 2.8 \checkmark more protons in Na ⁺ \checkmark		2
4.	b	11	 Any one of: brittle ✓ high melting point/crystalline/solid «at room temperature» ✓ low volatility ✓ conducts electricity when molten ✓ does not conduct electricity at room temperature ✓ 	Do not accept soluble in water. Ignore any chemical properties.	1 max

5.	а	all «species» are in same phase ✔	Accept "all species are in same state". Accept "all species are gases".	1
5.	b	«reaction quotient/Q =» $\frac{[SO_3]^2}{[SO_2]^2 [O_2]} / \frac{0.500^2}{0.200^2 \times 0.300} / 20.8 \checkmark$ reaction quotient/Q/20.8/answer < K_c /280 <i>OR</i> mixture needs more product for the number to equal $K_c \checkmark$ reaction proceeds to the right/products ✓	Do not award M3 without valid reasoning.	3

Question		on	Answers	Notes	Total
6.	а		Butanoic acid: $CH_3CH_2CH_2COOH(aq) + H_2O(l) \rightleftharpoons CH_3CH_2CH_2COO^-(aq) + H_3O^+(aq) \checkmark$ Ethylamine: $CH_3CH_2NH_2(aq) + H_2O(l) \rightleftharpoons CH_3CH_2NH_3^+(aq) + OH^-(aq) \checkmark$		2
6.	b		<i>Any two of:</i> butanoic acid forms more/stronger hydrogen bonds ✓ butanoic acid forms stronger London/dispersion forces ✓ butanoic acid forms stronger dipole–dipole interaction/force ✓	Accept "butanoic acid forms dimers" Accept "butanoic acid has larger M _r /hydrocarbon chain/number of electrons" for M2. Accept "butanoic acid has larger «permanent» dipole/more polar" for M3.	2 max
6.	С		CH ₃ CH ₂ NH ₃ ⁺ CH ₃ CH ₂ CH ₂ COO ⁻ <i>OR</i> CH ₃ CH ₂ CH ₂ COO ⁻ CH ₃ CH ₂ NH ₃ ⁺ <i>OR</i> CH ₃ CH ₂ CH ₂ COO ⁻ H ₃ N ⁺ CH ₂ CH ₃ \checkmark	The charges are not necessary for the mark.	1

Question		on	Answers	Notes	Total
7.	а		«electrophilic» addition/A _E	Accept "hydrogenation".	
			OR		1
			reduction 🗸		
7.	b		«(-286 kJ) + (-1411 kJ) =» -1697 «kJ» ✓		1
7.	с		≪–1697 kJ + 1561 kJ =» –136 «kJ»		
			OR		1
			«Δ $H^{\ominus} = \Delta H_{f}^{\ominus}$ (products) – Δ H_{f}^{\ominus} (reactants) = −84 kJ – 52 kJ =» −136 «kJ» \checkmark		

7.

Question		Answers	Notes	Total
7. 0	d	Accurate:		
		no approximations were made in the cycle		
		OR		
		values are specific to the compounds		
		OR		
		Hess's law is a statement of conservation of energy		
		OR		
		method is based on a law		
		OR		
		data in table has small uncertainties ✓		
		Approximate:		2
		values were experimentally determined/had uncertainties		
		OR		
		each value has been determined to only three/four significant figures		
		OR		
		different sources have «slightly» different values for enthalpy of combustion		
		OR		
		law is valid until disproved		
		OR		
		law of conservation of energy is now conservation of mass-energy		
		OR		
		small difference between two quite large terms «leads to high percentage uncertainty» \checkmark		